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absorber

multilayer (ML) mirror

vacuum

source       
(λ ≈ 13.5 𝑛𝑛𝑛𝑛)

projection

 Highly required for accurate simulation of EUV imaging and design and optimization of lithographic manufacturing processes.
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Introduction
Rigorous electromagnetic (EM) simulation in EUVL:

 Involves solving the scattering problem through numerical approximations domain Maxwell’s equation in the scalar form:

∇2𝐸𝐸(𝑟𝑟) + 𝑛𝑛2(𝑟𝑟)𝑘𝑘02𝐸𝐸(𝑟𝑟) = 0

 Challenges:
o modeling with the required accuracy.
o modeling of larger mask areas with design-relevant layouts. 
o fast modeling.

𝑛𝑛(𝑟𝑟)
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(i) Traditional numerical solvers (e.g., FEM1, FDTD2, RCWA3):
Idea: numerical techniques to iteratively solve EM simulations.

Computation time/memory amount increases for: 
• complex physical problems.
• modeling of larger mask areas 

with design-relevant layouts.
• high resolution/discretization.

(ii) Data-driven deep learning (e.g., GAN4, CNN5):
Idea: learns a correlation between input and output.
• Supervised based on a huge amount of expensive rigorously 

simulated or measured data.
• Valuable information carried by physics is ignored.

Input

Output

1 - Finite element method
2 - Finite-difference time-domain method
3 - Rigorous coupled-wave analysis
4 - Generative adversarial network
5 - Convolutional neural network

Motivation
Alternative to traditional solutions
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Motivation: explore the potential of (iii) physics-informed neural networks (PINN) for addressing 
complex optical problems in the field of EUV lithography to overcome aforementioned constraints.

Target

Trained model
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Motivation
Alternative to traditional solutions
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3. Physics-informed neural network (PINN)
Idea: training on residual of Maxwell/Helmholtz PDE in the space domain.

 Short inference time
 Generalizability
 No reference data required

U-Net

Geometry/Material 
distribution

Scattered 
electric field

Convolutional layers, pooling…

𝑓𝑓 = 𝛻𝛻2𝐸𝐸𝑠𝑠 + 𝛻𝛻2𝐸𝐸𝑖𝑖 + 𝒏𝒏𝟐𝟐𝑘𝑘02𝐸𝐸 = 0

Derivatives   
(finite differences)

Maxwell’s equation

PDE 
Residual

Back-propagation (weights update)
𝐿𝐿𝑓𝑓 =

1
𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦𝑁𝑁𝑧𝑧

�
𝑖𝑖=1

𝑁𝑁𝑥𝑥
�

j=1

𝑁𝑁𝑦𝑦
�

k=1

𝑁𝑁𝑧𝑧
|| ||2𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖

MSE Loss

Incident field 
(𝜑𝜑, 𝜃𝜃,𝑘𝑘0 … )

+

𝛻𝛻2

Boundary 
conditions

Total field



Part 2—
Workflow
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Pillar Contact hole Line

Simulation setup
Use cases

Different feature types

Different mask 
geometries (e.g., SWA)

Different illumination 
directions (e.g., 𝜑𝜑, 𝜃𝜃)

Different material properties

 Absorber: TaBN, low-n low-k, low-n medium-k, etc.
 Multilayer: MoSi, RuSi, intermixing, etc.

Space

PML

Floquet-Bloch BC

y,nm
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3D PINN
U-Net architecture [1]

448x448x672

112x112x168

56x56x84

112x112x168

56x56x84

224x224x336

448x448x672

3x3x5 3x3x5

. . . 
. . . . . . . . . 

Encoder Decoder

Latent space

Complex 
material 

distribution 
�𝑛𝑛

Complex 
scattered E-field

Complex 
total E-field

Complex 
incident E-field

+

𝑓𝑓 = 𝛻𝛻2𝐸𝐸𝑦𝑦𝑠𝑠 + 𝛻𝛻2𝐸𝐸𝑦𝑦𝑖𝑖 + 𝑛𝑛2𝑘𝑘02𝐸𝐸𝑦𝑦 = 0𝜑𝜑
Incident 
angles

Random sample 
generation

Tuning [2]

224x224x336

[1] Lim, J. and Psaltis, D., MaxwellNet: Physics-driven deep neural network training based on Maxwell’s equations, APL Photonics 7(1), 011301 (2022).
[2] Kang, S., Uchida, S., & Iwana, B. K. (2021). Tunable U-Net: Controlling image-to-image outputs using a tunable scalar value. IEEE Access, 9, 103279-103290.

https://pubs.aip.org/aip/app/article/7/1/011301/2835095/MaxwellNet-Physics-driven-deep-neural-network
https://ieeexplore.ieee.org/abstract/document/9481244
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3D PINN
Training parameters

2D 3D
Training time ~1-2 days ~7-8 days

Inference time ~1.10 ms ~100 ms

Table 2: Time evaluation.

 Good convergence behavior.

 Speedup with respect to Waveguide solver: up to ×10000.

2D
Absorber thickness, nm [52, 80]

Feature size (wafer), nm [20, 30]
Incident angle, ° [0, 15]
Azimuthal angle, ° [-25, 25]

Table 1: Parameterization ranges.
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Near-field prediction
Accuracy evaluation

 In contrast to other machine learning approaches, PINN is able to accurately predict the near field and learn physics.
 PINN accurately captures the physics and optical effects such as mask shadowing effects, partial penetration of EUV light into the 

reflective ML, and phase deformation by the EUV absorber.

7− 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚𝑠𝑠 𝑚𝑚𝑟𝑟𝑟𝑟𝑅𝑅𝑟𝑟: 𝑅𝑅𝑀𝑀𝑀𝑀𝐸𝐸 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

(𝐸𝐸𝑟𝑟𝑟𝑟𝑓𝑓 − 𝐸𝐸𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝)2

Input parameters:
 𝜑𝜑 = 𝟔𝟔°
 Feature type: line (hor)
 Feature size: 20 nm
 Pitch: 40 nm
 Multilayer (ML): 40xMoSi

6 −𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛 𝑚𝑚𝑎𝑎𝑠𝑠𝑅𝑅𝑎𝑎𝑠𝑠𝑅𝑅𝑚𝑚 𝑝𝑝𝑚𝑚𝑟𝑟𝑝𝑝𝑚𝑚𝑛𝑛𝑅𝑅𝑚𝑚𝑝𝑝𝑚𝑚 𝑚𝑚𝑟𝑟𝑟𝑟𝑅𝑅𝑟𝑟: 𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸 =
100%
𝑁𝑁

�
𝑖𝑖=1

𝑁𝑁

|
𝐸𝐸𝑟𝑟𝑟𝑟𝑓𝑓 − 𝐸𝐸𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝

𝐸𝐸𝑟𝑟𝑟𝑟𝑓𝑓
|

PINN accuracy:

𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝑧𝑧=0 = 0.18%

𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸 = 0.91%

𝑅𝑅𝑀𝑀𝑀𝑀𝐸𝐸 = 4.1𝐸𝐸 − 3a. u
7

6

y,nm y,nm y,nm
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Near-field prediction
Parameterization

 U-Net architecture makes PINN well-positioned for large-scale and high-dimensional problems due to parameter sharing via filter-based 
convolution operations.

 Differently from numerical solvers, once trained, generalized PINN can simulate light scattering in a few tens of milliseconds without re-
training and independently of problem complexity.

PINN model parameterized towards illumination:

 The Hopkins approach cannot be used for correct EUV imaging simulation.

 The advantage of a trained PINN is that the imaging simulation time is 
almost independent from the number of used noHopkins points.

y,nm
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Far-field prediction
Accuracy evaluation

Near-to-far-field transformation (FT)

Input parameters:
 𝜑𝜑 = 𝟔𝟔°
 Feature type: horizontal line
 Feature size: 20 nm
 Pitch: 64 nm
 Multilayer: 40xMoSi

Abs. error 
0.0031

Abs. error 
0.0007

Abs. error 
0.0004

PINN accuracy:

y,nm y,nm y,nm



Slide 15 SPIE Advanced Lithography + Patterning
San Jose, February 25-29 2024

Lithographic imaging
Relevant metrics

 The overlapping green area almost completely covers the ellipses of both process windows → sufficient PINN’s accuracy in predicting 
lithographic process windows. 

Pitch = 64 nm
Projection:
 NA = 0.33
Illumination:
 Inner pole radius 𝜎𝜎𝑖𝑖𝑖𝑖 = 0.30
 Outer radius 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 = 0.90
 Opening angle                          = 45°
 noHopkins point per pole           = 5

𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 = 19.81 nm (error 0.95%)
PINN accuracy:

𝑁𝑁𝑁𝑁𝐿𝐿𝑀𝑀𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 = 2.67 (error 0.75%)

y (nm)

y (nm)
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Mask 3D effects 
1. Non-telecentricity (nTC)

Large angle pole Small angle pole
 Both 3D mask design and off-axis illumination contribute to nTC error → shifts of image position through focus (pattern placement errors).

Pitch = 64 nm
Projection:
 NA = 0.33
Illumination:
 Inner pole radius 𝜎𝜎𝑖𝑖𝑖𝑖 = 0.30
 Outer radius 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 = 0.90
 Opening angle                          = 45°
 noHopkins point per pole           = 5

RMSE = 3.0E-2 nm2

RMSE = 1.0E-2 nm

RMSE = 2.0E-2 nm

y, nm y, nm
PINN accuracy:
𝑛𝑛𝑛𝑛𝐶𝐶𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 = 2.77 mrad

(error 0.72%) 
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Mask 3D effects 
2. Contrast fading

Pitch = 60 nm
Projection:
 NA = 0.33
Illumination:
 Inner pole radius 𝜎𝜎𝑖𝑖𝑖𝑖 = 0.30
 Outer radius 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 = 0.90
 Opening angle                          = 45°
 noHopkins point per pole           = 1

 Shadowing causes a shift between images from left and right poles → superposition of shifted images causes a drop of NILS.

 PINN explores variations of image blur vs. physical parameters in a short time.

 PINN can predict both diffraction order balancing and shifts of image position → improved image contrast through optimization.

RMSE = 5.4E-2
PINN accuracy:

Li
ne

w
id

th
 (

nm
)

Li
ne

w
id

th
 (

nm
)

Li
ne

w
id

th
 (

nm
)
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Mask 3D effects 
3.1 Shift of the best focus (BF)

Near field: phase deformation (i)

 Mask topography and the phase distortion in multilayer cause a shift of the BF position.

 PINN predicts correct phase shift between orders → therefore it can predict best focus shift versus physical parameters (pitch, absorber 
thickness, feature size).

Input parameters:
 𝜑𝜑 = 𝟔𝟔°
 Feature type: line (hor)
 Feature size: 20 nm
 Pitch: 64 nm
 Multilayer: 40xMoSi

Total field Reflected field

Far field: asymmetric diffraction behavior (ii)

Between -1st/0th:
𝛿𝛿 ∆𝑝𝑝𝑝𝑚𝑚𝑠𝑠𝑚𝑚 = 0.07%

Between 0th/+1st:
𝛿𝛿 ∆𝑝𝑝𝑝𝑚𝑚𝑠𝑠𝑚𝑚 = 0.01%

PINN accuracy:
y, nm y, nm

Phase: MSE = 1.8E-3 rad2
PINN accuracy:
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Mask 3D effects 
3.2 Shift of the best focus

Duty ratio
1.0:3.61.0:1.0

BF vs. Pitch

PINN accuracy:

RMSE = 9.0E-3 nm

 Trained PINN can predict BF versus absorber thickness, illumination and other 
settings in short time.

 PINN captures physical effects, such as the swing behaviour of BF versus 
absorber thickness variations.

Pitch = 60 nm
Projection:
 NA = 0.33
Illumination:
 Inner pole radius 𝜎𝜎𝑖𝑖𝑖𝑖 = 0.30
 Outer radius 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 = 0.90
 Opening angle                          = 45°
 noHopkins point per pole           = 1

BF vs. Size/Absorber thickness

PINN accuracy:
RMSE = 1.2 nm

Li
ne

w
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th
 (

nm
)
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w
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nm
)
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w
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nm
)
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Summary

 For the first time the potential of PINN to simulate EUV light diffraction from typical reflective EUV masks was explored:

 Good convergence behaviour, high accuracy, and stability. 

 Ability to interpolate and generalize across variations of EUV lithography-related parameters (illumination and mask geometries).

 PINN compared to rigorous numerical solvers:

 Fast inference time (ms) → significant speedup (up to ×10000) w.r.t. to numerical solution.

 Generalizability: light scattering simulation without re-training and independently of problem complexity.

 PINN compared to other machine learning approaches:

 is able to accurately simulate the near field.

 learns given physics and accurately captures the optical and mask-induced 3D effects.

 NO experimental or rigorously simulated data is required for training.

Li
ne

w
id

th
 (

nm
)
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Outlook

 PINN-based solver, adapted for arbitrary illumination settings → imaging simulation time is almost independent
from the number of used noHopkins points.

 Employing a vector formulation of the wave equation → investigate the ability of the PINN approach to predict the 
weak polarization effects.

 Inverse design → PINNs application in the OPC, SMO and ILT. 

PINN for EUVL applications

y, nm

For any questions please contact: vlad.medvedev@iisb.fraunhofer.de
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Simulation of 18 nm contact hole
Near field evaluation

Input parameters:
 𝜑𝜑 = 𝟔𝟔°
 Feature type: contact hole
 Feature size (mask): 72 nm +biasing
 Feature size (wafer): 18 nm
 Pitch: 36 nm
 Multilayer (ML): 40xMoSi

𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝑧𝑧=0 = 0.91%

𝑅𝑅𝑀𝑀𝑀𝑀𝐸𝐸 = 1.2𝐸𝐸 − 2a. u

PINN accuracy:

𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝑧𝑧=0 = 0.95%

𝑅𝑅𝑀𝑀𝑀𝑀𝐸𝐸 = 1.4𝐸𝐸 − 2a. uTaBO
TaBN
Ru

𝜑𝜑 = 6°; 𝜃𝜃 = 0°
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Pitch = 36 nm
Projection:
 NA = 0.33
Illumination:
 Inner pole radius 𝜎𝜎𝑖𝑖𝑖𝑖 = 0.30
 Outer radius 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 = 0.90
 Opening angle                          = 45°
 noHopkins point per pole           = 1

Simulation of 18 nm contact hole
Lithographic imaging

y, nm
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Near-field prediction
Parameterization

Absorber geometry variations Illumination variations 

 U-Net architecture makes PINN well-positioned for large-scale and high-dimensional problems due to parameter sharing via filter-based 
convolution operations.

 Differently from numerical solvers, once trained, generalized PINN can simulate light scattering in a few tens of milliseconds without re-
training and independently of problem complexity.

Pitch variations 

 Partially coherent imaging 
simulations without the 
assumption of shift-invariance 
(noHopkins approach).

 Seamless integration with 
spectrum and domain 
decomposition methods.

y, nm
 Inverse problems.
 Topology optimization.

y, nm

 Studying mask 3D effects.
y, nm
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3D PINN
Training parameters

NetworkSpecs

Type Convolutional Neural Network

U-Net depth [6...8] 

Filter 16

Batch size 4

Learning rate [1E-4 … 3E-4]

Learning rate decay Exponential; ×0.5 every 50000 epochs

Activation function CELU

Optimization Adam

GPU machine 2 x NVIDIA A100 80 Gb

Table 1: Model parameters
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Far-field prediction
Accuracy evaluation

Near-to-far-field 
transformation (FT)

Input parameters:
 𝜑𝜑 = 𝟔𝟔°
 Feature type: line/space (hor)
 Feature size: 20 nm
 Pitch: 64 nm
 Multilayer: 40xMoSi

Line
Space

Abs. error 
0.0031

Abs. error 
0.0007

Abs. error 
0.0004

PINN accuracy:

Abs. error 
0.0048

Abs. error 
0.0071

Abs. error 
0.0073

PINN accuracy:

y, nm y, nm y, nm y, nm y, nm y, nm
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Lithographic performance
Relevant metrics

 The overlapping green area almost completely covers the ellipses of both           
process windows → sufficient PINN’s accuracy in predicting lithographic process windows. 

Line Space

𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 = 19.92 nm (error 0.42%) 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 = 20.09 nm (error 0.47%)

Projection:
 NA = 0.33
Illumination:
 Inner pole radius 𝜎𝜎𝑖𝑖𝑖𝑖 = 0.30
 Outer radius 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 = 0.90
 Radial source point density       = 20
 Tangential source point density = 70
 noHopkins point per pole           = 1 (φ ± 2.86°)

PINN accuracy: PINN accuracy:

y, nm
y, nm
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