

Fraunhofer Institute for Integrated Systems and Device Technology IISB

3D Mask Simulation and Lithographic Imaging using Physics-Informed Neural Networks (PINN)

Vlad Medvedev, <u>Andreas Erdmann*</u>, Andreas Rosskopf Fraunhofer Institute for Integrated Systems and Device Technology (IISB), Erlangen, Germany

SPIE Advanced Lithography + Patterning 2024, San Jose, California, United States

Author

Nationality: Kazakhstan

- 2019 2022 M.Sc., Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. Thesis title: 3D mask defect and repair based on SEM images.
- 2022 present Ph.D., Computational Lithography & Al-Augmented Simulation Groups, Fraunhofer IISB, Germany. Thesis topic: Physics Informed Neural Networks (PINNs) for modeling of light diffraction from EUV masks and optical metasurfaces.

Outline

Introduction and motivation

Introduction

Rigorous electromagnetic (EM) simulation in EUVL:

- Highly required for accurate simulation of EUV imaging and design and optimization of lithographic manufacturing processes.
- Involves solving the scattering problem through numerical approximations domain Maxwell's equation in the scalar form:

- o modeling with the required accuracy.
- o modeling of larger mask areas with design-relevant layouts.
- o fast modeling.

Motivation

Alternative to traditional solutions

(i) Traditional numerical solvers (e.g., FEM¹, FDTD², RCWA³): Idea: numerical techniques to iteratively solve EM simulations.

Computation time/memory amount increases for:

- complex physical problems.
- modeling of larger mask areas with design-relevant layouts.
- high resolution/discretization.

(ii) Data-driven deep learning (e.g., GAN⁴, CNN⁵):

Idea: learns a correlation between input and output.

- Supervised based on a huge amount of expensive rigorously simulated or measured data.
- Valuable information carried by physics is ignored.

1 - Finite element method

- 2 Finite-difference time-domain method
- 3 Rigorous coupled-wave analysis
- 4 Generative adversarial network
 5 Convolutional neural network

Motivation: explore the potential of <u>(iii) physics-informed neural networks (PINN)</u> for addressing complex optical problems in the field of EUV lithography to overcome aforementioned constraints.

Table 1: Parameterization ranges.

	2D
Absorber thickness, nm	[52, 80]
Feature size (wafer), nm	[20, 30]
Incident angle, °	[0, 15]
Azimuthal angle, °	[-25, 25]

Table 2: Time evaluation.

	2D	3D
Training time	~1-2 days	~7-8 days
Inference time	~1.10 ms	~100 ms

- Good convergence behavior.
- Speedup with respect to Waveguide solver: up to ×10000.

Input parameters:

- $\varphi = 6^{\circ}$
- Feature type: line (hor)
- Feature size: 20 nm
- Pitch: 40 nm
- Multilayer (ML): 40xMoSi
- In contrast to other machine learning approaches, PINN is able to accurately predict the near field and learn physics.
- PINN accurately captures the physics and optical effects such as mask shadowing effects, partial penetration of EUV light into the reflective ML, and **phase deformation** by the EUV absorber.

- U-Net architecture makes PINN well-positioned for large-scale and high-dimensional problems due to parameter sharing via filter-based convolution operations.
- Differently from numerical solvers, once trained, generalized PINN can simulate light scattering in a few tens of milliseconds without retraining and independently of problem complexity.

SPIE Advanced Lithography + Patterning

San Jose, February 25-29 2024

Far-field prediction

Accuracy evaluation

Pitch = 64 nm	
Projection:	
NA = 0.33	
Illumination:	
Inner pole radius σ_{in}	= 0.30
• Outer radius σ_{out}	= 0.90
 Opening angle 	= 45°
 noHopkins point per pole 	= 5

The overlapping green area almost completely covers the ellipses of both process windows → sufficient PINN's accuracy in predicting lithographic process windows.

Lithographic imaging

Relevant metrics

Both 3D mask design and off-axis illumination contribute to nTC error → shifts of image position through focus (pattern placement errors).

Pitch = 60 nm		0.100 Source
Proiection:		0.075
• NA = 0.33		0.050
Illumination:		
Inner pole radius σ_{in}	= 0.30	
• Outer radius σ_{out}	= 0.90	-0.050
 Opening angle 	= 45°	-0.075
 noHopkins point per pole 	= 1	-0.100 -0.100 -0.050 0.000 0.050 0.100

- Shadowing causes a shift between images from left and right poles → superposition of shifted images causes a drop of NILS.
- PINN explores variations of image blur vs. physical parameters in a short time.
- PINN can predict both diffraction order balancing and shifts of image position \rightarrow improved image contrast through optimization.

Input parameters:		
	$\varphi = 6^{\circ}$	
•	Feature type: line (hor)	
•	Feature size: 20 nm	
•	Pitch: 64 nm	
•	Multilayer: 40xMoSi	
	Inj • •	

- Mask topography and the **phase distortion** in multilayer cause a shift of the BF position.
- PINN predicts correct phase shift between orders → therefore it can predict best focus shift versus physical parameters (pitch, absorber thickness, feature size).

Source Pitch = 60 nm0.100 0.075 Projection: 0.050 NA = 0.330.025 Illumination: 0.000 0 0 Inner pole radius σ_{in} = 0.30 -0.025 Outer radius σ_{out} = 0.90-0.050 Opening angle = 45° -0.075 -0.100 -0.050 noHopkins point per pole = 1 0.000 0.050 0.100

Summary

• For the first time the potential of PINN to simulate EUV light diffraction from typical reflective EUV masks was explored:

- Good convergence behaviour, high accuracy, and stability.
- Ability to interpolate and generalize across variations of EUV lithography-related parameters (illumination and mask geometries).

- PINN compared to other *machine learning* approaches:
 - is able to accurately simulate the near field.
 - learns given physics and accurately captures the optical and mask-induced 3D effects.
 - NO experimental or rigorously simulated data is required for training.
- PINN compared to rigorous *numerical solvers*:
 - Fast inference time (ms) \rightarrow significant speedup (up to ×10000) w.r.t. to numerical solution.
 - Generalizability: light scattering simulation without re-training and independently of problem complexity.

Outlook

PINN for EUVL applications

- Employing a vector formulation of the wave equation → investigate the ability of the PINN approach to predict the weak polarization effects.
- Inverse design \rightarrow PINNs application in the OPC, SMO and ILT.

For any questions please contact: <u>vlad.medvedev@iisb.fraunhofer.de</u>

Simulation of 18 nm contact hole

Near field evaluation

0.100

Input parameters:

- $\varphi = 6^{\circ}$
- Feature type: contact hole
- Feature size (mask): 72 nm +biasing
- Feature size (wafer): 18 nm
- Pitch: 36 nm
- Multilayer (ML): 40xMoSi

Simulation of 18 nm contact hole

Lithographic imaging

Pitch = 36 nm		
Projection:		
• NA = 0.33		
Illumination:		
• Inner pole radius σ_{in}	= 0.30	
 Outer radius σ_{out} 	= 0.90	
 Opening angle 	= 45°	
 noHopkins point per pole 	= 1	

Parameter	Waveguide method	PINN	Percentage error, $\%$
CD, nm	18.00	18.21	1.17
NILS	2.13	2.14	0.47
Best focus NILS, nm	17.39	17.90	2.93
Depth of focus NILS, nm	163.56	159.67	2.37

- U-Net architecture makes PINN well-positioned for large-scale and high-dimensional problems due to parameter sharing via filter-based convolution operations.
- Differently from numerical solvers, once trained, generalized PINN can simulate light scattering in a few tens of milliseconds without retraining and independently of problem complexity.

Table 1: Model parameters

NetworkSpecs	
Туре	Convolutional Neural Network
U-Net depth	[68]
Filter	16
Batch size	4
Learning rate	[1E-4 3E-4]
Learning rate decay	Exponential; ×0.5 every 50000 epochs
Activation function	CELU
Optimization	Adam
GPU machine	2 x NVIDIA A100 80 Gb

Lithographic performance

- Source Projection: 0.100 0.075 NA = 0.330.050 Illumination: 0.025 Inner pole radius σ_{in} = 0.30 0.000 0 0 Outer radius σ_{out} = 0.90 -0.025 Radial source point density = 20 -0.050 Tangential source point density = 70 -0.075 -0.100 -0.050 noHopkins point per pole $= 1 (\phi \pm 2.86^{\circ})$ 0.000 0.050 0.100
- The overlapping green area almost completely covers the ellipses of both

process windows \rightarrow sufficient PINN's accuracy in predicting lithographic process windows.

 $sin(\theta_x)$