

Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB

Exploring the limits of high contrast imaging using split pupil exposures in high NA EUV lithography

Andreas Erdmann¹, Hazem Mesilhy¹, Peter Evanschitzky¹, Gerardo Bottiglieri², Tim Brunner², Eelco van Setten², Claire van Lare², Mark van de Kerkhof²

1 Fraunhofer IISB 2 ASML

 $\frac{1}{\sqrt{2}}$

SPIE Advanced Lithography 2024, Feb 26, San Jose, CA

Dr. LiTHO Lithography

How to push (high NA) EUV to its ultimate limits?

Thoughts from a theoretical imaging perspective

Reduce k_1 by

- Illumination: off-axis, free form, low pupil fill, …
- Mask: OPC, PSM (low-n), assists, curvilinear, ...
- Process, resist: tone reversal, ...

What is special about (high NA) EUV?

- DoF approaches physical limit (usable resist thickness)
- High NILS and dose required to minimize LER
- EUV light is more costly \rightarrow print at high THRS
- More significant mask 3D effects can reduce NILS (image blur) and DoF (best focus shifts)

Which imaging solution* provides small k_1 with best tradeoff between NILS, THRS, and DoF?

**practical limitation due to reduced throughput of split pupil (SP) exposure are beyond the scope of this*

CD – critical dimension NA – numerical aperture DoF – depth of focus λ – wavelength

PSM – phase shift mask

LER – line edge roughness THRS – threshold-to-size

OPC – optical proximity correction

NILS – normalized image log slope

Public

work

Outline

Background and problem statement

- **Basic idea of split pupil (dual monopole) exposure**
- Overview on settings, methods and procedures

Problem analysis

- **Pupil plots of image metrics**
- **Exploration of parameter space by Pareto sampling**
- Understanding of root causes by near field analysis
- **Selected further learnings**
	- **Contributors to improved imaging performance**
	- Extendibility towards smaller k_1

Conclusions and outlook

Public

Basic idea of split pupil exposure

Example: dual monopole, single pitch line-space-pattern (L/S)

Basic idea of dual monopole exposure: J.-H. Franke, T. Brunner, E. Hendrickx, JM3, vol 21 (2022), <https://doi.org/10.1117/1.JMM.21.3.030501>

- **If a** Image shifts between left/right poles
- **Superposition of images causes blurred image (contrast**
- **I** Wafter shift between exposure with individual poles can compensate blur

settings:

Experimental demonstration of benefits of split pupil exposure

Presentation of Tim Brunner at SPIE EUVL, Monterey, Oct. 2023

Exp NILS of 14P28V lines plotted versus programmed shifts

Each shift has enough dose/focus values to find NILS 18% experimental NILS gain at optimum shift of 5.06nm

- Data fits expected cos well
	- $C \propto \cos(\pi \, \delta x / P)$
- First measured value of poleto-pole shift
	- 5.06nm wafer 1
	- 5.07nm wafer 2 \bullet
- Referenced to accurate stage
- Pole-to-pole shift consistent wth 58nm TaBN mask model

Basic idea of split pupil exposure

Example: dual monopole, two pitches L/S

settings:

- absorber: low-n, high-k, 40nm
- multilayer: Mo/Si, 2nm Ru-capping
- dipole (2 points)

Wafer shift in dual monopole exposures aligns both

- Feature position in a given image plane
- Best focus position of the involved pitches

Similar behavior was observed for many other use cases

Problem statement

Split pupil exposure / dual monopole improve imaging of line-space-patterns

Are split pupil exposures for 2D features, e.g., arrays of contacts useful as well?

Selected questions to be addressed*

- Can we gain from two exposures, or do we need more? How to split the pupil? How much can we gain?
- **How does split pupil exposure (SP) impact the optimum OPC (biasing), source shape, absorber n, k,** thickness?
- How about the impact of tonality and source filling on these statements?

**practical limitation due to reduced throughput and alignment of source (and photoresist) are beyond the scope*

Use-case settings

Fixed

- NA=0.55, reduction = $4 \times / 8 \times$, CRAO = 5.355° , center obscuration: 20%, unpolarized light
- **Target: square/hex contacts/DF or pillars/LF; 11nm 22nm pitch**
- **Slit position: center**

Variables

- Mask variables: absorber (material, thickness), bias, tonality, *multilayer*
- **Source variables: combinations of (rotated) ellipses**^{*} with a given source fill
- **•** Wafer shift (for split pupil exposure)

Objectives

- THRS (threshold-to-size \rightarrow throughput)
- $NILS\sqrt{THRS}$ • NILS (contrast): max{min(NILS over all cut directions)}
- DoF (PW-based *and NILS-based*)
- Min. variation of CD vs. cut direction: ΔCD

CRAO – chief ray angle of incidence LF – light field DF – dark field QP – quadrupole PW – process window

- Positive bias means larger holes/pillars on mask
- Positive dbiasXY specifies larger extension in y
- All values are given on wafer scale

nilsE:

**we did not target at the absolute best source, but tried to identify tendencies (source fill, location of "good areas" of the source)*

Public

Methods & procedures

Pupil maps for NILS, THRS, image shifts, …

- identification of most useful source areas
- **general tendencies and sensitivities**

Pareto analysis

- **EXPLORED EXPLORED EXPLORED EXPLORED EXPLORED EXPLORED EXPLORED EXPLORED EXPLORED EXPLORED EXPLORED**
- **EXECUTE:** identification of best settings and tradeoff relationships
- **•** comparison of different options
- consequences for SMO

Near field analysis

root cause analysis

Outline

Background and problem statement

- **Basic idea of split pupil (dual monopole) exposures**
- Overview on settings, methods and procedures

Problem analysis

- **Pupil plots of image metrics**
- **Exploration of parameter space by Pareto sampling**
- Understanding of root causes by near field analysis
- **Selected further learnings**
	- **Contributors to improved imaging performance**
	- Extendibility towards smaller k_1

Conclusions and outlook

Pupil diagrams of image metrics for single source point illumination

11nm contact (DF); low-n/high-k

- bias= 6.4 nm / 5.0nm
- **thickness=58.2nm**

Remarks:

Bias and thickness values for both cases are taken from Pareto of quadrupole exposure (no split) with largest DoF and nilsE

Observations

- Largest THRS and NILS in Zone A (4-beam interference)
- Noticeable variations of all image metrics between and within zones
- Strong image shift between left/right poles
- Qualitatively similar observations for other

Exploration of parameter space by Pareto sampling

Exploration of parameter space by Pareto sampling

- low-n/low-k, contact hole (DF)
- target: 11nm, pitch: 22nm
- pupil fill: 20%

 Tradeoff between achievable nilsE and DoF \triangleright Tunable by illumination setting

Single Exposure (SE)

Exploration of parameter space by Pareto sampling

- low-n/low-k
- target: 11nm, pitch: 22nm
- pupil fill: 10%/10%

- \triangleright More than 20% improvement of nilsE (compared to SE)
- \triangleright Only small improvement of DoF
- Significantly larger bias along shift direction (biasX)

Public

Split Pupil Exposure (SP)

Public

 0.0

 40

- low-n/low-k
- target: 11nm, pitch: 22nm

Understanding of root causes by near field analysis

Impact of wafer shift

- \triangleright Wafer shift sharpens distribution of superposed near field intensities, reduces shift between individual pole images and increases NILS
- DoF drops, threshold-to-size remains unaffected

- low-n/low-k
- target: 11nm, pitch: 22nm

Understanding of root causes by near field analysis

Impact of wafer shift & SMO

- \triangleright SP with dedicated SMO exhibits
	- significantly improved threshold-to-size and nilsE (driven by the larger biasing in x)
		- slightly improved NILS and DoF

Page 17 22.01.2025 © Fraunhofer IISB

Z rraunnofer **Simulation IISB**

Public

Pareto sampling

- \triangleright Split pupil exposure provides significantly larger gain than low-n/low-k absorber
- \triangleright SP: Low-n/low-k performs better than low-n/high-k (not shown here)
- \triangleright Free variation of n & k in accessible parameter range does not provide significant improvements

Analysis of Pareto Data for square contacts/DF

Comparison of exposure strategies (SE;SP) and absorbers (low-n/low-k; TaBN)

low-n/low-k, SP

low-n/low-k, SE

TaBN, SP TaBN, SE

• target: 11nm, pitch: 22nm • pupil fill: 20% (SE), 10%/10% SPE • variables: bias, ∆biasXY, absorberThickness: $25nm - 65 nm$, sigmaQPcenter, QPaspect, focus • objectives: THRS (max), nilsE (max), ∆CD (min)

- \triangleright SP offer significantly better THRS and better tradeoff between NILS and THRS
- \triangleright low-n/low-k with split pupil exposure (SP) enables largest threshold, NILS and DoF, e.g. NILS > 2.3 with THRS >0.4 and DoF>75nm
- \triangleright TaBN with SP performs significantly better than lown/low-k with single exposure

Analysis of Pareto Data for square contacts/DF

Comparison of exposure strategies (SE;SP) and absorbers (low-n/low-k; TaBN)

• target: 11nm, pitch: 22nm • pupil fill: 20% (SE), 10%/10% SPE • variables: bias, ∆biasXY, absorberThickness: • 25nm – 65 nm, sigmaQPcenter, QPaspect, focus • objectives: THRS (max), nilsE (max), ∆CD (min)

 \triangleright Optimum absorber thickness differs between single exposure and split pupil exposure

Outline

Background and problem statement

- **Basic idea of split pupil (dual monopole) exposures**
- Overview on settings, methods and procedures

Problem analysis

- **Pupil plots of image metrics**
- **Exploration of parameter space by Pareto sampling**
- **Understanding of root causes by near field analysis**
- **Selected further learnings**
	- **Contributors to improved imaging performance**
	- Extendibility towards smaller k_1

Conclusions and outlook

Overal performance improvements of Split Pupil exposures

Contributions of wafer shift, OPC/SMO and absorber thickness: summary

proc.featureType = "CONTACT" proc.absorberN/K: 0.09/0.02 $target = 11$ nm, pitch = 22 nm

3 % 个 SP3: shift + OPC/SMO & abs. thickness

13 % \uparrow SP2: shift + OPC/SMO (abs. thickness from Ref.)

10.5 % \uparrow SP1: shift only (OPC/SMO & abs. thickness from Ref.)

Ref. SE: OPC/SMO & abs. thickness

Wafer shift improves NILS

- \triangleright SP-aware OPC/SMO improves THRS
- Mask absorber thickness can be used for fine tuning: few % improvement

> 20 % improvement

DF – dark field LF – light field SE – single exposure SP – split pupil exposure

Extendibility towards smaller k1

Performance for 10nm target (20nm pitch):

- \triangleright Insufficient imaging performance for contacts/DF using single exposure
- \triangleright Comparable imaging performance for pillars/LF using SP and SE
- Comfortable imaging performance for contacts/DF using split exposure

Public

SMO – source mask optimization ILT – inverse lithography technology

Conclusions and outlook

- Split pupil exposures (SP) are beneficial for 2D features
- Gain depends on tonality, source filling, absorber material and target
- Application of SP has significant impact on SMO: OPC (biasing), optimum source shape and can even impact to optimum absorber thickness
- Flexible (AI enhanced) SMO algorithms/software can take care about the increased complexity
- Combination of low-n absorbers, SP and flexible/multi-objective SMO can push low k_1 high NA imaging to its ultimate limits
- How about split pupil aware ILT?

3 % 个 SP3: shift + OPC/SMO & abs. thickness

13 % \uparrow SP2: shift + OPC/SMO (abs. thickness from Ref.)

10.5 % \uparrow SP1: shift only (OPC/SMO & abs. thickness from Ref.)

Ref. SE: OPC/SMO & abs. thickness

**practical limitation due to reduced throughput and alignment of source (and photoresist) are beyond the scope*

Public

—

Slide 25 22.01.2025 © Fraunhofer IISB

Basic idea of split pupil exposure

Example: dual monopole, single pitch line-space-pattern (L/S)

settings:

- absorber: low-n, low-k, 40nm
- multilayer: Mo/Si, 2nm Ru-capping
- dipole (2 points)

- Image shift between left/right poles
- Superposition of images causes blurred image (contrast loss)
- Wafer shift between exposure with individual poles can compensate blur

Dual monopole imaging was originally proposed by J.H. Franke et al., Journal of Micro/Nanopatterning, Materials, and Metrology 21 (2022) 030501

<https://doi.org/10.1117/1.JMM.21.3.030501>

Public

Impact of tonality

Pupil diagrams of image metrics for single SP illumination

ΔposX (nm

11nm contact/DF, low-n/high-k

- \blacksquare bias= 6.4nm / 5.0nm
- thickness=58.2nm

 \overline{r}

ΔposY (nm)

11nm pillars/LF; low-n/high-k

- bias= -1.6 nm / -2.8 nm
- \blacksquare thickness=64.9nm

Remarks:

 Bias and thickness values for both cases are taken from Pareto of quadrupole exposure (no split) with largest DoF and nilsE

Contacts/DF:

- **Largest THRS and NILS in Zone A (4-beam interference)**
- **Strong image shift between left/right poles**

Pillars/LF:

- Zone A
	- **Slightly lower THRS and NILS**
	- **Significantly smaller image shifts**
- Zone D
	- **Significantly larger THRS in zone D**
	- **Large image shift and failed feature detection** for extraction of NILS along all cut directions

Impact of tonality

Pareto: contacts/DF vs. pillars/LF

representative data from Pareto front:

- Contacts/DF with pupil split exposure provides the ultimate best performance for nilsE/LCDU
- \triangleright Pupil split exposure provides only small performance improvement for pillars/LF
- Contacts/DF using SP and low-n/low-k provides highest THRS; best use of EUV light enabled by guiding of light and large biasing
- Pillars/LF using SE or SP can provide comparable (or slightly better) NILS

1_c • low-n/low-k $^{\circ}$ • target: 11nm, pitch: 22nm f_y (in NA) 0.0 **Impact of tonality** $sizeX = 12.8$ nm, $sizeY = 9.8$ nm -0 ^{ϵ} • thickness=40.1nm -1.0 Near field analysis for pillars (LF) optimized for single exposure (SE) -1 0 $0.0\quad 0.5$ f_x (in NA) near field (NF) intensity sum of NF single pole total image process windows for single (point) poles intensities (along 4 cuts) (at best focus) images $shift = 2.6$ nm (wafer scale) upper left upper right single pole images $shift=2.6nm$ $shift=2.6nm$ PWovl 0.400 10 10 pw 0.0deg 0.375 pw 45.0deg 0.350 ow 90.0deg pw 135.0deg $\frac{8}{6}$ 0.325 y (nm) (mm) ်မှု 0.300 DoF=77.0nm, EL=10.00% $\frac{5}{5}$ 0.275 lower left lower right \rightarrow 0.250 -5 -5 0.225 0.200 -10 -10 -40 -20 20 40 -10 10^{-} -10 -5 10 -5 Ò defocus (nm) 5 x (nm) x (nm) wafer \triangleright Superposition of scattered light from the low-n absorber target provides a reasonable bright surrounding of the target mask feature \triangleright Wafer shift decreases performance

- low-n/low-k
- target: 11nm, pitch: 22nm

Impact of tonality

Understanding of root causes by near field analysis: impact of shift on pillars/LF

Only minor improvement of nilsE (THRS) by SP, small optimum wafer shift

Root cause of swings: double images

Observations for line-space patterns

- reflections from multilayer and from top of absorber cause two contrast inverted images
- interference and variation of the phase shift between the top absorber-reflected and the multilayer-reflected light cause a swing behavior of the total amount of the total reflected light and many other imaging characteristics like NILS and BF

A. Erdmann et al.: "Characterization and mitigation of 3D mask effects in extreme ultraviolet lithography", Adv. Optical Techn. 6 (2017) 187- 201,<https://doi.org/10.1515/aot-2017-0019>

Double images for single exposure

proc.featureType = "CONTACT" sizeX/Y: 12.8/16.1nm proc.absorberN/K: 0.09/0.02 proc.qp_sigma/fill: 0.77/0.2

 $proc.includeML = True$ proc.defocus = 0.000nm vThicknessImages_015/16.zip

- Contrast inverted images
- \triangleright Image wo ML exhibits
	- almost no shift between poles (less/no contrast blur) \rightarrow with proper phase it can act as a weak attPSM
	- significant variation of intensity vs. thickness
	- difference in contrast between x and y cuts (due different bias)
- Optimum absorber thickness close to maxima of "threshold-swings" wo ML to "exploit" top absorber image

Double images for Split Pupil Exposure

proc.featureType = "CONTACT" sizeX/Y: 16.6/15.6nm proc.absorberN/K: 0.09/0.02 proc.qp_sigma/fill: 0.8/0.2

 $proc.includeML = True$ proc.defocus = -0.005 vThicknessImages_011/12.zip

- Contrast inverted images
- \triangleright Image wo ML exhibits
	- significant shift between poles (pronounced contrast blur)
	- significant variation if intensity vs. thickness
- Optimum absorber thickness at minima of "threshold-swings" wo ML to reduce negative impact of top absorber image

Comprehensive evaluation of Pareto data

General remarks

Limitations

- Complete evaluation of few selected data points/settings only
- Missing information on global trends, e.g. NILS or THRS vs. bias
- Page 34 22.01.2025 © Fraunhofer IISB Limited evaluation of settings: e.g. no data on reflectivity, integrated intensity (ImInt)

Evaluate all points/data on Pareto front

Goal of this investigation is to understand:

- Separate contributions of THRS and NILS to nilsE
- **IDENTIFICATE IN ADDET** Identification of additional global tendencies
- Comparison between:
	- single exposure (SE) and split pupil exposure (SP)
	- dark field (DF) and light field (LF)
	- **naterials**
		- low-n, low-k: n=0.9, k=0.02
		- TaBN: n=0.95, k=0.031
		- nkVar: n=[0.87, 1.0]. k=[0.01, 0.08]

This was done for:

- target: 11nm, pitch: 22nm
- pupil fill: 20% (SE), 10%/10% SP

Abbreviations used in this document

EUV : Extreme Ultra Violet CRAO : Chief Ray Angle of incidence at Object CRAA : Chief Range Azimuthal Angle of incidence CD : critical dimension NA : numerical aperture DoF : depth of focus l – wavelength OPC : Optical proximity Correction SMO : Source Mask Optimization ILT : Inverse Lithography Technology PSM : Phase Shift Mask NILS : Normalized Image Log Slope LER : Line Edge Roughness THRS : Threshold -to -size nilsE : NILS Efficiency = NILS x THRS $\frac{1}{2}$ DF : Dark field ILF : Light field SE : Single Exposure SP : Split Pupil exposure QP : Quadrupole PW : Process Window

