- τ _{ii}: ionized impurities
- τ_{ni} : neutral impurities
- τ_{po} : polar optical phonons
- τ_{nop} : non-polar optical phonons
- τ_{ac} : acoustic phonon
- **1** A. Parisini and R. Nipoti, J. Appl. Phys. 114, 243703 (2013), doi: 10.1063/1.4852515
- **2** R. Nipoti et al., Mater. Sci. Forum Vol. 1062, pp241-245 (2022) doi: 10.4028/p-n0f23q
- **3** H. Matsuura et al., J. Appl. Phys. Vol. 96, 5 (2004), doi: 10.1063/1.1775298
- **4** J. Pernot, S. Contreras and J. Camassel, J. Appl. Phys. 98, 023706 (2005), doi: 10.1063/1.1978987
- **5** H. Tanaka, et al., J. Appl. Phys. 123, 245704 (2018), doi: 10.1063/1.5025776

Determining Compensation of Implanted Aluminum Dopants by Simultaneous Fitting of Charge Carrier Concentration and Mobility

Julian Kauth¹⁾, Norman Boettcher¹⁾, Mathias Rommel¹⁾

 m

 \overline{cm}

 \mathbf{a} .

- Square van der Pauw test structures
- In n-type epitaxial layers with a nitrogen concentration of 1∙10¹⁶ cm-3
- Implanted aluminum concentrations from $1\cdot10^{17}$ cm⁻³ to 5 $\cdot10^{19}$ cm⁻³
- Annealed at 1700°C or 1850°C for 30 min
- Graphs show target implantation profile and Hall measurement results
- Empty symbols \rightarrow impurity band conduction \rightarrow excluded from fit

1000/T in K^{-1}

julian.kauth@iisb.fraunhofer.de

1) Fraunhofer IISB, Schottkystr. 10, 91058 Erlangen, Germany

Sample Preparation and Characterization

• Fits to measurement results of highly doped samples ($N_{\rm Implanded} > 1 \cdot 10^{18} \rm cm^{-3}$) show only small changes when removing the limit

But when fitting data from lowly doped samples ($N_{\rm Implanded} < 1 \cdot 10^{18} \rm cm^{-3}$) without limit:

- $N_{\text{Acc},1}$ and N_{Comp} reach unreasonably high values
- $N_{\text{Acc},1}$ and N_{Comp} are linked together a fit is equally as good with low $N_{\text{Acc},1}$ and low N_{Comp} as it is with high $N_{\text{Acc,1}}$ and high N_{Comp}
- Due to the position of the Fermi level, $N_{\text{Acc},1}^-$ depends only weakly on temperature, just like the concentration of ionized compensating defects.
- \rightarrow High degrees of freedom \rightarrow poorly defined fit \rightarrow results may be unphysical

Common Data Analysis

Commonly the neutrality equation is fit to the charge carrier concentration data [3]:

- Resulting parameters: ionization energies, acceptor and compensation concentrations
- Optional: total acceptor concentration limited to nominal implanted concentration

Analysis Incorporating the Mobility

In addition to the charge carrier concentration the mobility can also be used in the fit [2]. The mobility is calculated by accounting for different scattering mechanisms [1,4]:

dependence when looking at the fit to μ_{drift} vs the fit to p and thus are naturally more restricted

Fitting Without Limits

Conclusion:

- Fitting Hall measurement results of lowly Al-doped 4H-SiC with two acceptors is difficult, as the problem is ill-defined
- Simultaneously fitting p and $\mu_{\rm drift}$, a clear trend of the compensation concentration with implanted Al-concentration and annealing temperature emerges

 $1000/T$ in K^{-1}

$$
p + N_{\text{Comp}} = n + N_{\text{Acc},1} + N_{\text{Acc},2}
$$

$$
N_{\text{Acc}} = \frac{N_{\text{Acc}}}{1 + 4 \cdot \exp(\frac{E_{\text{Acc}} - E_{\text{F}}}{k_{\text{B}}T})}
$$

$$
\mu_{\text{drift}} = \frac{e\langle \tau \rangle}{m_{\text{h}}} \qquad \frac{1}{\tau} = \frac{1}{\tau_{\text{ii}}(N_{\text{Acc/Comp}})} + \frac{1}{\tau_{\text{ni}}(N_{\text{Acc/Comp}})} + \frac{1}{\tau_{\text{po}}} + \frac{1}{\tau_{\text{nop}}(D_{\text{nop}})} + \frac{1}{\tau_{\text{ac}}(D_{\text{ac}})}
$$

 $N_{\text{Acc},1}$ and N_{Comp} show a different

Abbreviations are for scattering due to:

