Determining Compensation of Implanted Aluminum Dopants by Simultaneous Fitting of Charge Carrier Concentration and Mobility

Julian Kauth¹⁾, Norman Boettcher¹⁾, Mathias Rommel¹⁾

julian.kauth@iisb.fraunhofer.de

1) Fraunhofer IISB, Schottkystr. 10, 91058 Erlangen, Germany

Sample Preparation and Characterization

- Square van der Pauw test structures
- In n-type epitaxial layers with a nitrogen concentration of 1.10¹⁶ cm⁻³
- Implanted aluminum concentrations from 1.10¹⁷ cm⁻³ to 5.10¹⁹ cm⁻³
- Annealed at 1700°C or 1850°C for 30 min
- Graphs show target implantation profile and Hall measurement results
- Empty symbols \rightarrow impurity band conduction \rightarrow excluded from fit

1000/*T* in K⁻¹

Common Data Analysis

Commonly the neutrality equation is fit to the charge carrier concentration data [3]:

$$p + N_{\text{Comp}} = n + N_{\text{Acc},1} + N_{\text{Acc},2}$$
$$N_{\text{Acc}}^{-} = \frac{N_{\text{Acc}}}{1 + 4 \cdot \exp(\frac{E_{\text{Acc}} - E_{\text{F}}}{k_{\text{B}}T})}$$

- Resulting parameters: ionization energies, acceptor and compensation concentrations
- Optional: total acceptor concentration limited to nominal implanted concentration

Fitting Without Limits

Fits to measurement results of highly doped samples ($N_{\text{Implanted}} > 1 \cdot 10^{18} \text{ cm}^{-3}$) show only small changes when removing the limit

But when fitting data from lowly doped samples ($N_{\text{Implanted}} < 1 \cdot 10^{18} \text{ cm}^{-3}$) without limit:

- $N_{Acc,1}$ and N_{Comp} reach unreasonably high values
- $N_{Acc,1}$ and N_{Comp} are linked together a fit is equally as good with low $N_{Acc,1}$ and low $N_{\rm Comp}$ as it is with high $N_{\rm Acc,1}$ and high $N_{\rm Comp}$
- Due to the position of the Fermi level, $N_{Acc,1}^{-}$ depends only weakly on temperature, just like the concentration of ionized compensating defects.
- \rightarrow High degrees of freedom \rightarrow poorly defined fit \rightarrow results may be unphysical

Analysis Incorporating the Mobility

In addition to the charge carrier concentration the mobility can also be used in the fit [2]. The mobility is calculated by accounting for different scattering mechanisms [1,4]:

$$\mu_{\text{drift}} = \frac{e\langle \tau \rangle}{m_{\text{h}}} \qquad \frac{1}{\tau} = \frac{1}{\tau_{\text{ii}}(N_{\text{Acc/Comp}})} + \frac{1}{\tau_{\text{ni}}(N_{\text{Acc/Comp}})} + \frac{1}{\tau_{\text{po}}} + \frac{1}{\tau_{\text{nop}}(D_{\text{nop}})} + \frac{1}{\tau_{\text{ac}}(D_{\text{ac}})}$$

 $N_{Acc,1}$ and N_{Comp} show a different

1000/*T* in K⁻¹

dependence when looking at the fit to μ_{drift} vs the fit to p and thus are naturally more restricted

Abbreviations are for scattering due to:

- τ_{ii} : ionized impurities
- τ_{ni} : neutral impurities
- τ_{po} : polar optical phonons
- τ_{nop} : non-polar optical phonons
- τ_{ac} : acoustic phonon
- **1** A. Parisini and R. Nipoti, J. Appl. Phys. 114, 243703 (2013), doi: 10.1063/1.4852515
- **2** R. Nipoti et al., Mater. Sci. Forum Vol. 1062, pp241-245 (2022) doi: 10.4028/p-n0f23q
- **3** H. Matsuura et al., J. Appl. Phys. Vol. 96, 5 (2004), doi: 10.1063/1.1775298
- 4 J. Pernot, S. Contreras and J. Camassel, J. Appl. Phys. 98, 023706 (2005), doi: 10.1063/1.1978987
- **5** H. Tanaka, et al., J. Appl. Phys. 123, 245704 (2018), doi: 10.1063/1.5025776

Conclusion:

- Fitting Hall measurement results of lowly Al-doped 4H-SiC with two acceptors is difficult, as the problem is ill-defined \bullet
- Simultaneously fitting p and μ_{drift} , a clear trend of the compensation concentration with implanted Al-concentration ightarrowand annealing temperature emerges