

Novel Device for Fast Detection and Limitation of Short-Circuit Currents in LVDC Grids

Johannes Gehring¹, Raffael Schwanninger², Bernd Wunder¹, Martin März², Vincent Lorentz³

¹ Fraunhofer Institute for Integrated Systems and Device Technology IISB

² Institute for Power Electronics (LEE), Friedrich-Alexander-University Erlangen-Nürnberg

³ Chair of Electronics for Electrical Energy Storage, University of Bayreuth

BASIC CONCEPT

Transformer with core that is **saturated** in normal operation

- ETD ferrite core
- Saturation by integrating a permanent magnet in air gap
- Grid coil in winding window
- Additional detection winding
- **Polarity** of magnet so that the flux caused by the magnet φ_m is **counteracting** the flux of the grid-side coil φ_L

Novel Device for Fast Detection and Limitation of Short-Circuit Currents in LVDC Grids Johannes Gehring

IISB

3/11

BASIC CONCEPT

Fully saturated core in non-fault operation

Resulting flux

• Non-fault operation:

 $\varphi_{res} = \varphi_m - \varphi_L \ge \varphi_{sat}$

- Short-circuit fault (threshold current exceeded): $\phi_{res} = \phi_m - \phi_{L,th} \le \phi_{sat}$
 - →inductance increases significantly
 →current rise limitation

4/11

MAGNETIC BEHAVIOR

Equivalent magnetic circuit

- Coil and permanent magnet represented by magnetomotive force
- Magnetic reluctance of magnet
- Geometry of core is represented by magnetic reluctances

International

Conference on

DC Microgrids

MAGNETIC BEHAVIOR

Detection winding

- Utilizes change in core permeability ullet
- Induced voltage increases

$$u_{\rm meas} = \frac{n}{2} \cdot \frac{d\phi_{\rm res}}{dt}$$

Proper placement important •

wering a Sustainable Future

for Humanity

Signal can be **directly** fed into a logic circuit No additional processing unit

Similar aging behavior as a fuse (reliability)

Johannes Gehring

IISB

6/11

UNIVERSITÄT BAYREUTH

SIMULATION OF DESATURATION

Finite-elements analysis

- Complete desaturation at 30 A
- Maximum change rate at 23 A
- Above 50 A again fully saturated

Required detection time depends on both current thresholds:

$$t_{\rm dt} = \left(i_{\rm L,th2} - i_{\rm L,th}\right) \frac{L_{\rm sc}}{U_{\rm grid}}$$

Number of windings adjusts inductance and threshold

EEE POWER

ELECTRONICS SOCIETY

DC Microgrids

UNIVERSITÄT BAYREUTH

7/11

Simulation Parameter	Value
Coil windings	11
Ferrite core	ETD 29
Ferrite material	N87
Saturation flux density	450 mT
Magnet thickness	1 mm
Magnet material	N35

Novel Device for Fast Detection and Limitation of Short-Circuit Currents in LVDC Grids Johannes Gehring

Fraunhofer

PROTOTYPE LABORATORY TESTS

Prototype has been characterized

Constant voltage applied to input terminals

- Inductance changes from L_{nom} 2 µH to L_{sc} 10 µH in short-circuit operation (factor 5)
- Maximum change in inductance at approximately 32 A
- Voltage across the detection coil reaches its highest ¹⁰
 value at nearly the same current of 34 A
 → Suitable for triggering a semiconductor switch

 \rightarrow Suitable for triggering a semiconductor switch

UNIVERSITÄT

BAYREUTH

8/11

Design Parameter	Value
Nominal current	10 A
Maximum detection voltage	8 V
Grid coil windings	11
Detection coil windings	1
Ferrite core	ETD 29
Ferrite material	N87
Magnet thickness	1 mm
Magnet material	N35

LECTRONICS SOCIETY

Novel Device for Fast Detection and Limitation of Short-Circuit Currents in LVDC Grids Johannes Gehring

💹 Fraunhofei

IISB

PROTOTYPE LABORATORY TESTS

Additional inductive load for switch determined

- Energy-equivalent inductance changes only from 2 μ H to 4 μ H
- Complete prototype of a SCCB was built
- Set-reset (SR) bistable element to ensure that the switch remains open
- External inputs for control and reset
- Protection from reverse- and over-voltages
- Realized with a SiC-MOSFET for up to 800 V grid voltage

Novel Device for Fast Detection and Limitation of Short-Circuit Currents in LVDC Grids Johannes Gehring

Fraunhofer

IISB

9/11

PROTOTYPE LABORATORY TESTS

Prototype was tested with a short-circuit at 60 V in capacitive grid

- Threshold at 25 A
- After **15 ns** the gate driver begins to discharge the gate
- Due to the inductively stored energy, the switching process takes around 200 ns from exceeding the threshold including the detection time

CONCLUSION AND FURTHER WORK

ODLU is a promising solution for managing short-circuit currents in DC grids.

The hardware-based **fast** and **galvanically isolated** detection signal further enhances its applicability in semiconductor circuit breakers.

First results of the ongoing experiments demonstrate the device's effectiveness. A reaction time of 15 ns was achieved and an interruption time of 200 ns at 60 V. Further tests will be performed with voltages up to 800 V and a current threshold of 100 A.

UNIVERSITÄT BAYREUTH

11/11

International Conference on

DC Microgrids

IEEE POWER ELECTRONICS SOCIETY Powering a Sustainable Future

Novel Device for Fast Detection and Limitation of Short-Circuit Currents in LVDC Grids Johannes Gehring

