

Evaluation of Semiconductor-Based Isolation for Electric Vehicle Chargers in DC Microgrids

Kilian Drexler¹, Yan Zhou², Johannes Gehring¹, Bernd Wunder¹, Vincent Lorentz³, Martin März²

¹ Fraunhofer Institute for Integrated Systems and Device Technology IISB

² Institute for Power Electronics (LEE), Friedrich-Alexander-University Erlangen-Nürnberg

³ Chair of Electronics for Electrical Energy Storage, University of Bayreuth

Isolation requirements according to IEC 61851-23

Between **AC grid** and EV to create **IT system**

Between **two EVs** in chargers with multiple outlets

IEEE POWER ELECTRONICS SOCIETY Powering a Sustainable Future

Evaluation of Semiconductor-Based Isolation for Electric Vehicle Chargers in DC Microgrids **Kilian Drexler**

INTRODUCTION

3/10

Isolated DC/DC-converters result in an immense cost and size factor due to the transformer, yet standard non-isolated topologies do not have the required fault behavior

Introduction of converter with Semiconductor-Based Isolation (SCI) for charging applications in DC microgrids

SYSTEM DESCRIPTION AND SIMULATION MODEL

Simulation based evaluation of system behavior during faults

- EVSE with three different converter topologies
- Common 650 V DC grid
- Grid and EVs: IT-System (High-ohmic midpoint grounding)
- Cabling modelled as RL circuits

Simulation Darameter		Value
Simulation Parameter		value
Grounding resistance	R _{PE}	1,0 MΩ
Y-Capacitance Grid	C _{Y,Grid}	0,5 μF
Y-Capacitance EVSE (each)	C _{Y,EVSE}	0,5 μF
Y-Capacitance EV (each)	C _{Y,EV}	2 <i>,</i> 0 μF
Battery voltage of EV	U _{Bat,EV}	400 V or 800 V
EV Battery ESR	R _{Bat}	100 mΩ
Line parameters grid side	R _{Line,Grid}	10 mΩ
	L _{Line,Grid}	4,0 μH
Line parameters charging cable	R _{Line,EV}	5,0 mΩ
		2,0 µH

IEEE POWER ELECTRONICS SOCIETY Powering a Sustainable Future

Evaluation of Semiconductor-Based Isolation for Electric Vehicle Chargers in DC Microgrids **Kilian Drexler**

SYSTEM DESCRIPTION AND SIMULATION MODEL

System behavior for three different **fault scenarios** is evaluated

- 1. **Ground fault** with low fault resistance
- 2. Classification of touch current
- 3. **Parallel fault** between vehicles with different battery voltage

CONVERTER TOPOLOGIES

DC Microgrids

Converter system behavior during faults in comparison with standard converter topologies

Simulation of all faults once with each type

- **DAB** as isolated reference scenario following requirements of IEC 61851-23
- **H-Bridge** to showcase system behavior or standard non-isolated converters
- SCI converter to be evaluated

Evaluation of Semiconductor-Based Isolation for Electric Vehicle Chargers in DC Microgrids **Kilian Drexler**

SIMULATION OF FAULT SCENARIOS

Potential in reference to PE during ground faults

wering a Sustainable Future

for Humanity

- **DAB**: No influnce of fault on grid or other $EV \rightarrow V$
- **H-Bridge:** Fault in EV2 results in isolation fault in EV1 and grid $\rightarrow \times$

Kilian Drexler

SCI: slight slope of grid side voltage potential eventually settling at ±315 V due to MOSFET output capacitances \rightarrow

IISB

Conference on **DC** Microgrids Fault from EV2 DC+ to PE EV1: 400 V EV2: 400 V R_{fault} : 100 m Ω

International

SIMULATION OF FAULT SCENARIOS

Touch current evaluation according to IEC 60479-1/2

- **c1-Line** as absolut upper limit
- DAB/SCI: touch current limited to faulty vehicle \rightarrow
- **H-Bridge:** touch current influenced by all EVs and grid
 - \rightarrow heavily depending on grid size and configuration \rightarrow ?

Evaluation of Semiconductor-Based Isolation for Electric Vehicle Chargers in DC Microgrids **Kilian Drexler**

SIMULATION OF FAULT SCENARIOS

Parallel fault of two EVs

Advancing Technolog

for Humanity

- H-Bridge: High damage potential due to direct connection of 400 V and 800 V battery system $\rightarrow \times$
- **DAB/SCI**: Short bursts due to capactive voltage balancing currents otherwise uninterrupted charging operation \rightarrow

IISB

International

EVSE1 DC+ to

EVSE2 DC+

Fault from

EV1: 400 V

EV2: 800 V

 R_{fault} : 500 m Ω

UNIVERSITÄT BAYREUTH

9/10

Conference on

DC Microgrids

for Electric Vehicle Chargers in DC Microgrids ELECTRONICS SOCIETY owering a Sustainable Future **Kilian Drexler**

CONCLUSION

The **semiconductor-based isolating converter** topology shows a system behavior during faults **similar to isolated converters** while offering immense potential of **cost and size benefits**.

Designing of a charging park, especially when integrating it into a (industrial) DC microgrid, can be realized at the **same level of safety** and **without additional protection devices**.

